Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
IEEE Aerospace Conference Proceedings ; 2023-March, 2023.
Article in English | Scopus | ID: covidwho-20236235

ABSTRACT

The Earth Surface Mineral Dust Source Investigation (EMIT) acquires new observations of the Earth from a state-of-the-art, optically fast F/1.8 visible to short wavelength infrared imaging spectrometer with high signal-to-noise ratio and excellent spectroscopic uniformity. EMIT was launched to the International Space Station from Cape Canaveral, Florida, on July 14, 2022 local time. The EMIT instrument is the latest in a series of more than 30 imaging spectrometers and testbeds developed at the Jet Propulsion Laboratory, beginning with the Airborne Imaging Spectrometer that first flew in 1982. EMIT's science objectives use the spectral signatures of minerals observed across the Earth's arid and semi-arid lands containing dust sources to update the soil composition of advanced Earth System Models (ESMs) to better understand and reduce uncertainties in mineral dust aerosol radiative forcing at the local, regional, and global scale, now and in the future. EMIT has begun to collect and deliver high-quality mineral composition determinations for the arid land regions of our planet. Over 1 billion high-quality mineral determinations are expected over the course of the one-year nominal science mission. Currently, detailed knowledge of the composition of the Earth's mineral dust source regions is uncertain and traced to less than 5,000 surface sample mineralogical analyses. The development of the EMIT imaging spectrometer instrumentation was completed successfully, despite the severe impacts of the COVID-19 pandemic. The EMIT Science Data System is complete and running with the full set of algorithms required. These tested algorithms are open source and will be made available to the broader community. These include calibration to measured radiance, atmospheric correction to surface reflectance, mineral composition determination, aggregation to ESM resolution, and ESM runs to address the science objectives. In this paper, the instrument characteristics, ground calibration, in-orbit performance, and early science results are reported. © 2023 IEEE.

2.
Atmos Pollut Res ; 13(6): 101424, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1803525

ABSTRACT

A regional air quality model system (RAQMS) driven by the Weather Research and Forecasting model (WRF) is applied to investigate the distribution and evolution of mineral dust and anthropogenic aerosols over China in April 2020, when air quality was improved due to reduced human activity during the COVID-19 epidemic, whereas dust storms began to attack China and deteriorated air quality. A dust deflation model was developed and improved mineral dust prediction. Model validation demonstrated that RAQMS was able to reproduce PM10, PM2.5 and aerosol components reasonably well. China suffered from three dust events in April 2020, with the maximum hourly PM10 concentrations exceeding 700 µg m-3 in downwind cities over the North China Plain (NCP). Mineral dust dominated PM10 mass (>80%) over the Gobi deserts in north and west China, while it comprised approximately 30-50% of PM10 over wide areas of east China. The domain and monthly mean dust mass fractions in PM10 were estimated to be 47% and 43% over the North China Plain and east China, respectively. On average, mineral dust contributed up to 22% and 21% of PM2.5 mass over the North China Plain and east China in April 2020, respectively. Sulfate and nitrate produced by heterogeneous chemical reactions on dust surface accounted for approximately 9% and 13% of secondary inorganic aerosols (SIA) concentration over the North China Plain and east China, respectively. The results from this study demonstrated that mineral dust made an important contribution to particulate matter mass during the COVID-19 epidemic in spring 2020 over China.

3.
Frontiers in Environmental Science ; 9:16, 2021.
Article in English | Web of Science | ID: covidwho-1581356

ABSTRACT

Asian dust can be transported at least one full circuit around the globe. During the transportation, dust can interact with local air-borne dust and pollutants, and has a profound impact on the environment. A novel coronavirus (COVID-19) has been affecting human activities worldwide since early 2020. The Chinese government has implemented emergency control measures. Since April 2020, control measures to reduce anthropogenic emissions have been gradually reduced. The optical properties of aerosols during the dust transport were affected by meteorological conditions, local environmental conditions and human activities. Therefore, two dust weather processes in March 2018 and March 2020 were screened under similar meteorological fields and transportation paths, which were mainly affected by human activities. Based on lidar data, in East China, compared with 2018, the average aerosol optical depth (AOD) of all types of aerosols at 0-4 km in 2020 decreased by 55.48%, while the AOD of dust aerosols decreased by 43.59%. The average particle depolarization ratio and color ratio decreased by 40.33 and 10.56% respectively. Due to the reduction of anthropogenic emissions in China (detected by lidar), the concentration of surface PM2.5 decreased by 57.47%. This indicated that due to the decrease in human activities caused by COVID-19 control measures, the optical properties of aerosols were significantly reduced during dust weather process in eastern China. However, in the Pacific region, compared with 2018, the AOD values of 0-1 km layer and 1-6 km layer in 2020 increased by 56.4% and decreased by 29.2% respectively. The difference between the two contributions of dust aerosols was very small. Meanwhile, compared with 2018, China's near surface pollutants decreased significantly in 2020, indicating that the near surface AOD of the Pacific in 2020 was mainly contributed by local pollutants. This study was of great significance to the study of long-range and cross regional transport of pollutants.

SELECTION OF CITATIONS
SEARCH DETAIL